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The knowledge of the world is only to be acquired in the world, and not in a
closet.

—Lord Chesterfield, from Letters to His Son (1694–1773)

Introduction

All children know that there are mysteries, sometimes frightening mysteries, hidden
in closets. Adults often brush this aside as the result of an overactive imagination.
But perhaps we should take a second look. Perhaps it is our imaginations that are
underactive. If you have a closet (or any doorway) covered with a bifold door there is
an astroid lurking just inside and the only way you can get to it is to coax it carefully
with a little bit of calculus. If your door has more than one fold there are even more
interesting objects waiting to be discovered.

This investigation began when one of the authors (Seiple) was standing at his closet
wondering how much floor space was needed to accommodate the opening and closing
of the bifold door mounted on it. He was supposed to be getting dressed for school,
but he was in high school at the time so perhaps he can be forgiven. When he arrived
at college he described the problem to Boman and Brazier who encouraged him to
investigate the problem using the calculus tools he was learning at the time. This article
is the result of his investigations.

Notice that if a closet of width r has a door mounted as in FIGURE 1 (we will call
this the standard mounting) then opening (or closing) the door requires πr2

4 square feet
of floor space be kept clear of obstacles. Adults might be able to do this but it can be
an onerous task for a teenager.

This would seem to be the end of the story except that a survey of your closets will
quickly convince you that the standard mounting is actually relatively rare on closet
doors.

Our (admittedly unscientific) survey of all of the closets we have easy access to
convinces us that most of the closet doors in the United States which do not use the
standard mounting use a bifold mounting which we discusss next.
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Figure 1 The floor space required for a standard door is the full quarter-circle. A bifold
door requires substantially less, but how much less?

Bifold doors

Many closet doors do not have ample room for a standard mounting, therefore to save
floor space closet doors are often bifold doors as shown in FIGURE 2. That is, the door
is broken and hinged in the middle so that each panel is r/2 in length. This allows the
door to be mounted in a manner similar to the standard mounting we described earlier
except that only the left panel sweeps out a quarter-circle. The inner edge of the left
panel of the door is fixed at the point A and the outer edge of the right panel is allowed
to slide along the track.

(0, r/2)

θ = π/4 (r, 0)

Closet interior
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Figure 2 This figure shows the view from above a bifold door as the door closes. It first
sweeps out the area under the circular arc of radius r/2, but when θ reaches π/4 the
nature of the curve changes. Notice that “bifold” is a misnomer. There is only one fold.

To begin, consider a bifold door starting in the fully open position and closing to
the right as in FIGURE 2. The floor space required to close the door is enclosed by the
curve we’ll call ξ(θ) and the x and y axes.

It is clear that ξ has two distinct components. The first is simply the circular arc
swept out by the left panel of the door as θ proceeds from π/2 to π/4. However when
θ = π/4 the nature of ξ changes. At this point the right panel of the door is tangent to
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the circular arc. Thus the entire quarter-circle swept out by the left panel of the door is
enclosed in the area which has already been swept out. Moreover as the door continues
to close, more area outside the quarter-circle continues to be accumulated.

We seek a parameterization of the outer envelope of this area.
To that end, assume that the door is opening as in FIGURE 3 and that 0 ≤ θ ≤ π/4.

Notice the change here. For the development we are about to present, it is easier to
think of the door as opening rather than closing. In either case ξ(θ) is unchanged.

(r cos(θ), 0)r/2

(r cos(θ + Δθ), 0)

P = (xp, yp)

L2

L1Δθ

θ

Figure 3 When θ is incremented by �θ the original position of the right panel of the
door and its new position will intersect. The point of intersection at P gives an approxi-
mate parameterization of the curve ξ(θ). As �θ → 0 this becomes exact.

We increment θ by �θ and consider the position of the right panel of the door at
θ and θ + �θ . If we can find the coordinates of the point P we have an approximate
parameterization of the curve ξ. If P = (xP , yP) for a fixed �θ then it is clear that

ξ(θ) = lim
�θ→0

(xP , yP)

is the parameterization we seek.
Let L1 be the line of the right panel at θ and let L2 be the line at θ + �θ and

observe that the slopes of L1 and L2 are − tan θ and − tan(θ + �θ), respectively.
Thus the equation of L1 is

y = − tan θ(x − r cos θ) (1)

and the equation of L2 is

y = − tan(θ + �θ)(x − r cos(θ + �θ). (2)

Combining equations 1 and 2 we get

xP = r

(
sin(θ + �θ) − sin θ

tan(θ + �θ) − tan(θ)

)
.

Putting this back into either L1 or L2 gives

yP = −r tan θ

(
sin(θ + �θ) − sin θ

tan(θ + �θ) − tan(θ)
− cos θ

)
.

Taking the limit as �θ → 0 we get
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x = lim
�θ→0

r

(
sin(θ + �θ) − sin θ

tan(θ + �θ) − tan(θ)

)

= r lim
�θ→0

(
sin(θ+�θ)−sin θ

�θ

tan(θ+�θ)−tan(θ)

�θ

)
.

Observe that the numerator and denominator of the formula above are just the deriva-
tives of sin θ and tan θ respectively. Thus

x(θ) = r
cos θ

sec2 θ
= r cos3 θ.

Similarly

y(θ) = r sin3 θ.

Thus a parameterization for the outer envelope of the floor space used by a bifold
door is given by:

ξ(θ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
r cos3 θ

r sin3 θ

)
if 0 ≤ θ ≤ π/4

(
r/2 cos θ

r/2 sin θ

)
if π/4 ≤ θ ≤ π/2

. (3)

Notice that letting θ move from 0 to π/2 opens the door while letting θ move from
π/2 to 0 closes it. To compute the area of the floor space required we need to ensure
that we integrate from left to right. The area of the floor space is then given by

∫ θ=0

θ=π/2
y(θ) dx =

∫ θ=0

θ=π/4
r sin3(θ)

dx

dθ
dθ +

∫ θ=π/4

θ=π/2
r/2 sin θ

dx

dθ
dθ

= 3r 2

∫ π/4

0
sin4 θ cos2 θ dθ + r 2/4

∫ π/2

π/4
sin2 θ dθ

= 5πr 2

64
.

So our initial question is resolved. If a closet r feet wide is covered by a bifold door
5πr2

64 square feet of floor space is required to accommodate the door. If the same closet
is closed with an ordinary door then πr 2/4 square feet are needed—a savings of nearly
70%.

Adding door panels

It is clear that adding 2, 3, 4, or n folds will reduce the floor space required even further.
FIGURE 4 shows the situation with 2 folds. If the doors are hinged so that the angles
denoted by θ in FIGURE 4 are always equal then the problem can be approached in the
same manner as before as we now show.
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As before we perturb θ by �θ and consider the point of intersection of the rightmost
panels in FIGURE 4. In that case the equation of L1 is (again):

y = − tan θ(x − r cos θ)

and the equation of L2 is (again):

y = − tan(θ + �θ)(x − r cos(θ + �θ)).

(0, r/4)

Q
θθ

PΔθ
L1

L2

 (r cos(θ), 0)

(r, 0)

Figure 4 Each door panel has length r/4.

Since these are exactly the same equations we found in the previous section it fol-
lows that the parameterization we seek is (again) the astroid:(

r cos3 θ

r sin3 θ

)
.

Indeed it should be clear from the above that adding more hinges has no effect
on the astroidal portion of the curve. The very same astroid appears regardless of the
number of folds in the door as long as all of the panels are hinged so that they make
the same angle with the front of the closet (the angle θ in FIGURE 4). This assumption
is critical. If the angles are allowed to differ the problem becomes considerably more
complex.

Recall however that the curve ξ(θ) from the previous section had two components.
The other portion was the circular arc traced out by the point corresponding to Q in
FIGURE 4. To find the corresponding portion for the current curve, which we’ll denote
by ξ2(θ), we need to parameterize the coordinates of the point Q.

Referring again to FIGURE 4 it is clear that

Q(θ) =
(

3r/4 cos θ

r/4 sin θ

)

and that the transition between the components of the curve occurs when P(θ) =
Q(θ), or when θ = π/6. Thus when we have two folds in our door the curve ξ2(θ) is

ξ2(θ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
r cos3 θ

r sin3 θ

)
, if 0 ≤ θ ≤ π/6

(
3r/4 cos θ

r/4 sin θ

)
, if π/6 ≤ θ ≤ π/2

and in the general case, with n folds, the curve is
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ξn(θ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
r cos3 θ

r sin3 θ

)
, if 0 ≤ θ ≤ cos−1

(
2n−1

2n

)
(

(2n−1)r
2n cos θ
r

2n sin θ

)
, if cos−1

(
2n−1

2n

) ≤ θ ≤ π/2

.

It seems curious that the same curves, an ellipse and an astroid, appear regardless of
how many panels we split our door into. Indeed, the same curves appear in the two-fold
(four panel) case even if the panels are of two distinct sizes.

By now the calculation is very familiar so we will not belabor it. Consider the
arrangement depicted in FIGURE 5. Again we have two folds (four panels) but they are
no longer the same length and we have normalized the sum of the lengths of the panels
to 1. If we perturb the angle θ by �θ and find the intersection point P (not shown
in the figure) between the original location of the rightmost panel and its perturbed
location we find that the equations of L1 and L2 are again precisely the same as in our
first problem. Thus the astroid emerges exactly as before. Moreover it is easy to show
that a parameterization of the point Q in the figure is:

Q(θ) =
(

(1/2 + α) cos θ

(1/2 − α) sin θ

)

which is again an ellipse.

θ θ

α α

1/2 − α
1/2 − α

Q

Figure 5 A bifold door with different length panels also generates an astroid and ellipse.

It seems very odd that the same curves keep emerging no matter how we try to
generalize the problem.

Wiles’ light switch

Andrew Wiles [5] has likened mathematics research to walking into an unlighted room.
At first all is dark. As you fumble around you begin to get a sense of the location of
the objects in the room and the relationships between them. Eventually, if you are
lucky, you find the light switch and flip it. Then you see all of the structures and the
relationships between them that you were already familiar with as well as new ones
that you were only dimly aware of or may not have known at all.

In this section we will flip the light switch for this problem. It turns out that the
relationship between ellipses and astroids, which has been our common theme, has
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been known since antiquity. Archimedes used it to create a mechanical device, known
as the “Trammel of Archimedes,” for drawing ellipses (see [1, 2, 3]).

Consider the following alternate construction of the astroid [4, 6]. We begin with
vertical line segment whose endpoints are at (0, 1) and the origin (see FIGURE 6).
Keeping the length of the segment constant we move the endpoints vertically toward
the origin and horizontally toward (1, 0), respectively. The outer envelope of the region
thus constructed is the astroid.

open
door

closet interior

A

B
C

door in motion

ξ

D

Figure 6 As the door closes points A and B move toward points B and C, respectively.

Rather, it is one quarter of the classical astroid of antiquity. This is the portion we
have seen so far. If we continue in the same fashion—moving the left end of our line
segment vertically to (0, −1) and the right end horizontally back to the origin—we will
generate the same curve reflected about the x-axis. Continuing in the same vein until
our line segment has returned to its original position gives the full astroid of antiquity
as it was known to Archimedes. This is shown in FIGURE 7.

(0, 1)

(0, 1)

Figure 7 One way to define the astroid is as the outer envelope of a particular set of
ellipses as shown here. A bifold door is shown schematically in the first quadrant.
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FIGURE 7 also displays the astroid as the outer envelope of a particular set of el-
lipses. If we fix a point D on our original line segment (see FIGURE 6) between (0, 1)

and the origin and follow it as we trace out the astroid then it is easy to show that the
path it follows is an ellipse.

It seems that as our folding doors close the peak of the rightmost fold (the point Q
seen in figures 4 and 5) traces out one of these ellipses (the elliptical portion of the
curve ξn(θ)) until it touches the astroid. At that point the rightmost panel of the door
is tangent to both the ellipse and the astroid and our ξn(θ) switches modes and begins
to follow the astroid.

You can’t have a light without a dark to stick it in.

—Arlo Guthrie (1947– )
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